Fuel Switch & Energy Efficiency CDM Project Case Study

Prepared for Private Sector Seminar July 21, 2011

JICA CDM Expert Team

Lecturer's Background

Sc: SmartEnergy

Hirotaka NEGISHI

General Manager, Strategic Investment Dep't, Japan Smart Energy Co., Ltd.

Working Experiences

Marubeni Co.

• In charge of nuclear power plant's supply materials trading.

Australian Embassy, Tokyo

• Promote FDI to Australia from Japan and East Asia. Involved plantation project in Australia to offset GHG emissions from Japanese power stations.

Pricewaterhouse Coopers, Tokyo

 Trained for DOE staff. Advisory services for major Japanese companies' of its carbon management strategies.

Academic BG & Qualification

- Graduate Keio University (LLB), Tokyo, JAPAN.
- Attended Ex-MBA course, Monash University, Melbourne, Australia.
- Hold Masters' Degree (Law and Diplomacy), Fletcher School, Boston, USA
- Qualified ISO 14001 EMS Auditor
- Trained for CDM Validator/Verifier (Completed Japanese Gov't Training course)

Contents

Sc: SmartEnergy

- What is Energy Efficiency Project?
- What kind of energy saving measures are available?
- Understand importance of MRV.
 - M: Measurable
 - R: Reportable
 - V: Verifiable

Unless, you can MRV, you never earn credit!

Figure 3.8- Hydro/Thermal/Non-conventional Energy Share in the National Grid

Figure 5.4 – Electricity Demand by Consumer Category

Principles

Output (O) = Product (P) + Emissions (e)

 $P + e = I x t x \eta$

Project Goal: Reduce "e" without damaging Output!

<u>Fuel Change</u> Alternate Input to less carbon intensive fuels to reduce emissions.

Energy Efficiency Improve efficiency, while maintaining an output level. Runtime, will shorten at the same time.

<u>DSM</u>

Curve out demand amount and reduce overall product of input, time and efficiency.

Sc: SmartEnergy

Biomass Fuel

1. What is Fuel Switching?

Fuel switch measures in this category will replace carbonintensive fossil fuel with a lesscarbon-intensive fossil fuel, whereas a switch from fossil fuel to renewable biomass is categorized as "renewable energy".

S: SmartEnergy

1.Emission Factors of Major Energy Sources

Fuel	Heat Value	COEF	EF	Gravity	
	TJ/MT	tCO2/TJ	tCO2/MT	t/m3:t/kl	
Furnace Oil	0.0410	77.4	3.173	0.972t/kl	3.264tCO ₂ /kl
Diesel Oil	0.0433	74.1	3.209	0.846t/kl	3.793tCO ₂ /kl
Residual Oil	0.0410	77.4	3.173	0.972t/kl	3.264tCO ₂ /kl
Coal	0.0293	101.0	2.816	1.300t/m ³	3.661tCO ₂ /t
LPG	0.0502	63.1	3.168		3.168tCO ₂ /kg
Natural Gas	0.0411	64.2	2.639		2.108kgCO ₂ /Nm ³
Grid Electricity					0.686tCO ₂ /MWh

Data source

1. Energy Data 2007, Sustainable Energy Authority

2. IPCC Guideline for National Greenhouse Gas Inventories, 2006, Table 1-4

3. Natural Gas's gravity data was not available and utilized Japanese data for reference purposes. Nm³ is a unit of gas under normal state.

Biomass Fuels are regarded as "carbon neutral" & count as zero emissions by itself.

1. Fuel Change CDM Project

Number of CDM project registered and issued CER.

	On Track	Registered	Issued	CER %
Fossil Fuel Switch Total	71	57		
Coal to NG	9	5	3	65%
Coal to Oil	0	0	0	
Lignite to NG	0	0	0	
New NG plant*	30	26	14	42%
New NG plant utilize LNG	1	8	3	74%
Oil to Electricity	2	0	0	
Oil to LPG	1	0	0	
Oil to NG	28	18	13	100%
Biomass Energy Total	395	358	151	85%

*AM0029: Grid Connected electricity generation plants using natural gas is widely used in high performance combined cycle gas pwer generation projects in China and in India.

2. What is Energy Efficiency project?

Energy Efficiency Project

The category energy efficiency includes all measures aiming to enhance the energy efficiency improvement. Due to the project activity, a specific output or service requires less energy consumption. Waste energy recovery is also included in this category.

Supply Side Energy Efficiency

Power supplier and distributer implement energy efficiency measures, inc. auxiary power –gen. Heat recovery Combined cycle •Rehabilitation of power station Smart grid

S: SmartEnergy

Demand Side Energy Efficiency

the adoption of energy-efficient equipment, lamps, ballasts, refrigerators, motors, fans, air conditioners, appliances in many sites. inc. BEMS(building Energy management System).

2. Energy Efficiency Statistics

- As of May 2011, there are 289 registered Energy Efficiency CDM projects.
- Of which 88 projects are demand side energy efficiency projects and the rest are supply side (including transmission) energy efficiency projects.
- Of all the registered energy efficiency CDM,108 projects have issued CER.

2. Key Insight of Energy Efficiency Project

In project, the output has to be maintained before and after the energy efficiency project

S SmartEnergy

3. Technology: Boiler Replacement

- Boiler Replacement aimed to improve efficiency of boiler.
- Project also changes its fuel to low-emission fuel.

Old Boiler

Project can be identified

Sc: SmartEnergy

Boiler water pump continuously pumping water, regardless water amount in the boiler tank.

Inverter technology on/off the pump be referring water level of the tank. By reducing idle time of the pump, it reduces an electricity consumption.

3. Technology: Inverter & Load Variable

Monitoring

Power consumption of the system (kWh)

Sc: SmartEnergy

Number of operational hours (hrs)

Emission factor of the electricity (tCO₂e/kWh)

3. Technology: Pipe Blanket

Pipe Blanket is a method to cover pipe and high temperature parts by glass wool.

Monitoring

- ◆Temperature of in/outflow (°C)
- External temperature (°C)
- ◆Flow rate (m³/sec)
- Consumption of fuel/electricity to generate steam(L of fuel or kWh of electricity)

Sc: SmartEnergy

Emission factors

Blanketing pipe is a handy project due to easy installation and cost-effectiveness. The project is difficult to factorize the energy reduction causality to pipe blanket, fluid's temperature or an ambient temperature drops.

3.Technology: Lighting Modification

• LED Application

Replace inefficient lighting to efficient lightings.

• Application of Automatic Controller/sensor

The project needs to monitor electricity consumption of modified section to avoid disturbances.

18

2. Case: Project in Laundromat Services (Cont'd)

Feature of Energy Use

- Requires intensive energy for pressing (steam), laundry (hot water).
- Heat requirements varied with peripheral temperatures but stable for year-round.
- Outside temperature varies from 32°C in August to -20°C in February.
- ◆ Energy costs, electricity and fuel, occupies 50% of expenses.

S SmartEnergy

4. What can be done in CDM & what not?

	Project A: Boiler Fuel Change	Project B: LED application	Project C: Inverter Application	Project D: Blanket Application
AMS Methodology	III.B	II.E	II.C	
Baseline	Keep using furnace oil.	Keep using mercury lamp	Keep operating pump regardless load/demand	Expose valve where heat are easily leak.
Project	Replace furnace oil to natural gas.	Replace mercury lamp to LED lamp to reduce electricity consumption	Control and limit pump action depends on water level of boiler.	Cover valve to avoid heat expose to atmosphere
Monitoring	Gas consumption with gas flow meter with gas company's invoice.	Electricity Consumption with metering devices and electricity bill.	Metering devices	Continuous monitoring of temperature of fluid and exposed environment.
CDM?				

Fuel Change & Energy Efficiency Project: Summary

Fuel Change Project

- a) Biomass Fuel Change Project:
- Check supply stability in terms of volume and price for project periods.
- Transportation of fuel are to be measured in the calculation, closer the source, better project performance.
- b) Fossil Fuel Change Project:
- It maybe economical without carbon income.
- Performance improves by combined with energy efficiency improvements.

Energy Efficiency Project

- MRV is key factors if the project aimed to evaluate environmental performances.
- Maintain output level before and after the project to measure nominal performance improvement.
- Causality and attribution are important to claim credits.

\$

?

0

Think Twice!! Do you really need carbon credit to realize your project??